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a b s t r a c t

In rapidly mixing flows with low diffusion rates and/or fast reactions, accurate calculation of the local
concentration distribution becomes impractical. One approach is to consider mixing segregated fluids
and follow the interface between the two fluids as it stretches in the flow. For a rapid mixing flow such
as a chaotic or turbulent flow, the area of the interface between segregated fluids grows exponentially,
so that determination of the location of the interface rapidly becomes unfeasible. In this study, a method
for calculating the local lamellar structure (i.e. the orientation and thicknesses of the lamellae) for any
advection time and at any location in the flow is developed for two-dimensional flows. Locally the lamellar
structure is assumed to be one-dimensional, and the orientation of the lamellae can be determined
from the direction corresponding to the maximum stretching rate for fluid arriving at the location. The
lamellar structure can be readily determined by mapping a short finite line, oriented perpendicular to

the orientation of the lamellae, backwards in time to the initial conditions. Once the line is returned to
its initial location the intersection of the line with the initial interface between the segregated fluids
can be used to accurately determine the detailed lamellar structure, in particular the thicknesses of the
lamellae. The accuracy of the method is demonstrated for two deterministic chaotic flows, the sine flow
and a piecewise linear flow, the saw-tooth flow. The use of the piecewise linear flow enables accurate

prec
he ini
testing of the method as
advection times, where t

. Introduction

For flows with slow diffusion or fast reaction, the simulation of
ixing processes is an important and challenging problem. Such

rocesses include combustion [1], fast and mixing sensitive reac-
ions [2] and reaction injection moulding of polymers [3]. While
ncreasingly complex flows are becoming accessible to numerical
imulation using Eulerian computational fluid dynamics, accurate
imulation of mixing and reaction processes continues to be an
mportant challenge. For fast mixing flows, the length scale of the
oncentration field rapidly becomes smaller than practical grid
izes leading to numerical diffusion errors.

If we consider mixing segregated fluids in the absence of diffu-
ion, the mixing process is described by the location of the interface
etween the fluids. For a fast mixing flow such as a chaotic or tur-
ulent flow, this interface stretches at an exponential rate [4–6].
he consequence of this exponential stretching rate for mixing

imulations is that the data storage capacity required to describe
he interface rapidly becomes excessive. Ottino [5] and others [7]
ave suggested that the mixing rate can be characterised by the
tretching rate of infinitesimal lines advected by the flow. The dis-

∗ Tel.: +44 0 161 306 8849; fax: +44 0 161 306 9321.
E-mail address: edward.roberts@manchester.ac.uk.
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ise simulations of the full interface can be obtained for relatively long
tial interface is a polygon.

© 2010 Elsevier B.V. All rights reserved.

tribution of this stretching rate can be plotted across the flow field
to illustrate the mixing distribution or averaged for optimisation
studies [7,8]. While this approach can be useful, it fails to describe
the complete mixing process and the link to processes with dif-
fusion and reaction is unclear. In addition, it has been shown [9]
that the stretching of the interface is not a useful measure for com-
paring the mixing achieved under different conditions. In terms of
the mixing characteristics proposed by Dankwerts [10], interface
stretching is also not useful for predicting the intensity of segrega-
tion.

In spite of the issue of exponential stretching rates, significant
progress has been made in describing the mixing process, partic-
ularly in two-dimensional chaotic flows. A widely used approach
has been to consider diffusion and reaction processes occurring in
layers of segregated fluid in a lamellar structure [11–20]. Studies of
mixing in these flows [21–23] have shown that after a short time,
a one-dimensional lamellar structure is formed locally, with all
lamellae oriented in the same direction. In Dankwerts terms, the
characteristic thickness of the lamellae corresponds to a mixing
measure: the scale of segregation [10]. In the absence of diffu-

sion, the mixing at any location can be described simply by the
thicknesses of the lamellae. For processes with diffusion and reac-
tion, one-dimensional simulations within these lamellar structures,
including the effects of stretching, are relatively straightforward
[11,15,18,24].

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:edward.roberts@manchester.ac.uk
dx.doi.org/10.1016/j.cej.2010.03.001
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Muzzio and co-workers [23] have shown that for chaotic flows
he local lamellar structure is oriented in the direction of maxi-

um stretching rate, which is parallel to the unstable manifold
or a chaotic flow. They termed this property ‘asymptotic direction-
lity’. Furthermore, they have shown that the distribution of the
amellar thicknesses (in particular the probability density function
PDF) can be accurately estimated from the distribution of stretch-

ng rates in the flow. In addition, Clifford et al. [18] showed that
he volume averaged stretch rate can be used with a very simple
ne-dimensional model to describe the progress of a reaction in a
haotic flow.

However, for mixing sensitive reactions, studies have shown
hat the reaction yield can depend strongly on the order that lamel-
ae are arranged [19]. Cox [25] has also shown that lamellar models
ail to accurately follow mixing and reaction processes as they do
ot include a description of how the detailed micromixing structure
evelops with time. It is normally assumed that the detailed local
icrostructure can only be obtained by following the full inter-

ace between segregated fluids. However, for long mixing times
his presents significant difficulties. In rapid mixing flows the inter-
ace stretches exponentially, so that memory required to describe
he interface becomes very large. Moreover, it has previously been
hown [26] that the error ε in the calculation of lamellae thicknesses
ssociated with using a chain of points to describe the interface is
f order:

∼
(

d2

8Rw

)
(1)

here d is the separation of the points, R is the radius of curvature of
he interface and w is the thickness of the lamellar. As w decreases at
n exponential rate, not only is the length of the interface increas-
ng but the spacing between the points required to describe the
nterface is also decreasing. For rapidly mixing flows, calculation
f the full lamellar structure is widely considered to be impractical
or significant mixing time.

In this paper we develop an alternative method for the calcu-
ation of the local lamellae structure, without the need to follow
he interface between segregated fluids. The focus is on two-
imensional deterministic flows, but the methods developed may
e generalised to other types of flow.

. Determination of local lamellar structure

To date, the only reported method for determining the local
amellar structure at some location (X, �) formed by the passive
dvection of a segregated fluid in a chaotic flow is to accurately
ollow the interface (a material line �) surrounding the segre-
ated fluid [6]. The local lamellar thicknesses can then be found
y determining the intersection points between a short line ori-
nted perpendicular to the lamellae. The location of the interface
fter advection time �, �� , is normally determined by advecting a
hain of passive points arranged along the interface [6,27], ensuring
hat the spacing between points remains small by adding points to
he original interface �0.

Here we take a new approach by considering the advection
ackwards in time of a finite line �� , oriented perpendicular to
he lamellae (see Fig. 1). The orientation of the line can be readily
etermined as the local lamellae will be oriented in the direction
f maximum stretching s for a point arriving at (X, �). For a two-
imensional chaotic flow this corresponds to the direction of the

ositive local Liapunov exponent at (X, �). The perpendicular direc-
ion corresponds to the direction of minimum stretching, which is
egative (i.e. the direction of the negative local Liapunov exponent).

f we consider advection backwards in time from (X, �) to (X0, 0),
he stretching rates are inverted: the direction of minimum (neg-
Journal 160 (2010) 267–276

ative) stretching for the forward advection becomes the direction
of maximum (positive) stretching for the reverse advection (back-
wards in time). The finite line thus stretches rapidly in the reverse
flow. We can now examine the location of this finite line after it
has been advected and stretched back to t = 0, �0 (Fig. 1). The loca-
tion of intersection points (Yi,0) between the line �0 and the initial
boundary of the segregated fluid �0 correspond to the edges of the
lamellae in the vicinity of (X, �). The thicknesses of the lamellae
can be thus be found by determining the length of the line at t = 0
between adjacent intersection points (Yi,0 and Yi+1,0) and the aver-
age stretching rate between the points (experienced as the line is
advected back from t = � to t = 0). Note that the method is not effec-
tive at locations where the interface has high curvature, usually
corresponding to folds in the lamellar structure. However, in rapid
mixing flows this is unlikely to occur, and it would be relatively
easy to check the curvature at the location.

We can thus formulate a procedure for determining the local
lamellar structure at around any location (X, �), which we will call
the ‘backtracking method’:

(i) Advect the location (X, �) backwards in time to (X0, 0),
determine the deformation tensor T for this motion and the
associated direction of maximum stretching.

ii) Advect a finite length line �� , centred at X and oriented in the
direction of maximum stretching for the motion from (X, �) to
(X0, 0). The line can be followed by advecting a chain of points
Pi,� backwards in time to Pi,0, and adding points to the origi-
nal line �� if the distance between adjacent points exceeds a
suitable tolerance �.

iii) At each point Pi in the chain of points used to describe the line,
determine the local stretching si of the line experienced during
the advection backwards in time from t = � to t = 0. This stretch-
ing can be determined by following the advection of a vector
ıPi,� applied at Pi, and the stretching si is defined as

si =
∥∥ıPi,0

∥∥∥∥ıPi,�

∥∥ . (2)

iv) Determine the location of intersection points Yi,0 between the
line �0 and the boundary of the initial segregated region of fluid
�0.

(v) To find the thickness of the lamella between Yi,� and Yi+1,�, we
account for the shrinking (s−1) of the line �0 as it is advected
forward to ��:

wi =
∫ Yi+1,�

Yi,�

s−1d��. (3)

In principle this method can be applied to any two-dimensional
flow where passive points can be advected forward or backwards in
time. In this study we use simple periodic deterministic flows which
exhibit a high degree of chaos in the advection behaviour in order
to test the described above. The lamellae thicknesses at some loca-
tion in the flow are determined firstly by following the boundary
� between the segregated fluids and secondly by the backtrack-
ing method proposed above. The deterministic flows used for this
study are described in the subsequent section.

3. Deterministic flows

Simple deterministic flows which exhibit chaotic advection

have been widely studied since Aref demonstrated chaotic
behaviour in a two-dimensional periodic journal bearing flow [28].
We have selected two highly idealised flows to use as a test bed for
the method described in the previous section. The first of these
is the sine flow (SF), as under suitable conditions this exhibits
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Fig. 1. Schematic illustration of the advection of a segregated region of fluid forwards and backwards in time. A finite line perpendicular to the local lamellar structure
advected backwards in time will stretch to intersect the initial segregated region at points corresponding to the edges of the lamellae.

Fig. 2. Periodic velocity field for the sine flow, (a) nT ≤ t < (n + (1/2))T and (b) (n + (1/2))T ≤ t < nT.

Fig. 3. Periodic velocity field for the saw-tooth flow, (a) nT ≤ t < (n + (1/2))T; and (b) (n + (1/2))T ≤ t < nT. The dashed lines indicate the shear planes corresponding to disconti-
nuities in the velocity gradient.
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Fig. 4. Poincaré maps for (a) sine flow and (b) saw-tooth flow at a range of flow periods T. The periodic velocity fields are defined in Eqs. (3) and (4) (sine flow) and (5)–(10)
(saw-tooth flow).

Fig. 5. Advection of a passive boundary for five cycles of the sine flow with a flow period of T = 1.2, (a) t = 0; (b) t = T; (c) t = 2T; (d) t = 3T; and (e) t = 5T.
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Fig. 6. Advection of a passive boundary for five cycles of the saw-tooth flow

trong chaotic mixing and has been widely used for mixing studies
6,18,23,27,29]. The sine flow is spatially and temporally periodic,
ith the velocity field defined as follows:

= (sin 2�y, 0), nT ≤ t <
(

n + 1
2

)
T, (4)

= (0, sin 2�x),
(

n + 1
2

)
T ≤ t < (n + 1)T (5)

here x and y are dimensionless coordinates, T is the flow period,
is the number of periods and t is the time. This flow field is illus-

rated in Fig. 2.
As discussed in the introduction, accurate determination of

amellae thicknesses by following the boundary � between seg-
egated fluids is a significant challenge. Since we wish to test an
lternative method, we have used a piecewise linear flow similar
o the sine flow, which enables more accurate determination of the
amellae thicknesses from the boundary for the case where �0 is a
olygon with straight sides. This flow, first described by Pasman-
er [30], is very similar to the sine flow, but uses a saw-tooth wave
ather than a sine wave for the velocity fields (Fig. 3):

T ≤ t <
(

n + 1
2

)
T :

= (4y, 0), 0 ≤ y <
1
4

, (6)

= (2 − 4y, 0),
1
4

≤ y <
3
4

, (7)
= (4y − 4, 0),
3
4

≤ y < 1, (8)

n + 1
2

)
T ≤ t < nT :
a flow period of T = 1.2, (a) t = 0; (b) t = T; (c) t = 2T; (d) t = 3T; and (e) t = 5T.

v = (0, 4x), 0 ≤ x <
1
4

, (9)

v = (0, 2 − 4x),
1
4

≤ x <
3
4

, (10)

v = (0, 4x − 4),
3
4

≤ x < 1, (11)

The mixing behaviour of these two flows depends strongly on
the flow period T, with islands of order observed associated with
elliptic periodic points for T < ∼1.1. Poincaré maps for the sine flow
and the saw-tooth flow are shown in Fig. 4 for a range of values of T.
These were obtained by advecting 100 passive markers distributed
evenly in the unit box (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) and plotting their location
after each cycle of motion (t = T, 2T, 3T, . . .) for 300 cycles. For these
maps the spatial periodic boundary conditions were used so that
when a particle flowed out of the box it immediately re-entered on
the opposite side.

In both cases stationary elliptic points occur at the centre of each
side of the unit box, with associated islands of order at low values
of T. At the centre of the unit box there is a hyperbolic stationary
point. Chaotic regions grow around this hyperbolic point as the flow
period is increased, and these are generally larger for the saw-tooth
flow than the sine flow at the same flow period. As T approaches 1,
four islands of order appear in the sine flow associated with period
two elliptic points. In both cases the chaotic regions appear to fill
the flow field at large T.

4. Local lamellar structure
For each flow the local lamellar structure has been determined
by two methods for globally chaotic flows (T = 1.2 for the sine flow
and T = 1.1 for the saw-tooth flow). The first method, which we will
call the boundary method, is the conventional method of follow-
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ig. 7. Lamellae structure formed in the sine and saw-tooth flows at the location X
iameter = 0.002; (c) saw-tooth flow, t = 3T, circle diameter = 0.12; and (d) saw-toot
egregated region of fluid shown in Fig. 4(a) at t = 0.

ng the boundary � of the segregated fluid. Initially the segregated
egion of fluid is a square box with sides of length 0.2 and centred
t (0.3, 0.3) as shown in Fig. 5(a). As the boundary stretches in the
ine flow points are added to the original boundary �0 to ensure

hat no two points on �t are separated by a distance of more than

= 0.005. Fig. 5 shows the location of the boundary after one, two,
hree and five cycles for T = 1.2. In order to maximise the number
f lamellae obtained at any location, periodic boundary conditions

ig. 8. Location of a finite line across the lamellae (a) at X = (0.5, 0.5), t = 3T, and after adve
hat the line in (a) is for the sine flow; for the saw-tooth flow the orientation of the line
quare segregated region, corresponding to lamellae at X, t = 3T.
0.5), for T = 1.2, (a) sine flow, t = 3T, circle diameter = 0.12; (b) sine flow, t = 5T, circle
, t = 5T, circle diameter = 0.002. The black regions indicate fluid that was inside the

were used as before. This is equivalent to there being an equiva-
lent segregated region of fluid in all adjacent unit boxes (i.e. for
all i ≤ x ≤ i + 1, j ≤ y ≤ j + 1, where i and j are integers). The boundary
stretches rapidly so that after a few cycles the structure of the seg-

regated fluid within the unit box becomes almost indistinguishable,
appearing to fill most of the box.

In the case of the saw-tooth flow, it is not necessary to add points
to the original boundary. The linear nature of the flow ensures that

ction backwards in time to t = 0 for the (b) sine and (c) saw-tooth flow, T = 1.2. Note
is slightly different. At t = 0 the line is a dashed line except where it intercepts the



E.P.L. Roberts / Chemical Engineering Journal 160 (2010) 267–276 273

F meth
s box siz
t n in F

s
c

t

t

F
f

ig. 9. Lamellar structure at X = (0.5, 0.5) for T = 1.2, determined by the backtracking
ize = 0.002; (c) saw-tooth flow, t = 3T, box size = 0.12; and (d) saw-tooth flow, t = 5T,
o the intersections of the stretched finite line with the initial segregated fluid show

traight lines advected in the flow remain straight, and on each half
ycle simply fold at the shear planes shown in Fig. 3:
= nT, y = 1
2

i + 1
4

(12)

=
(

n + 1
2

)
T, x = 1

2
i + 1

4
(13)

ig. 10. Map of the lamellar structure across the unit box generated by stretching a finite
or (a) the sine flow and (b) the saw-tooth flow with T = 1.2.
od described in the text, (a) sine flow, t = 3T, box size = 0.12; (b) sine flow, t = 5T, box
e = 0.002. The nine and eight lamellae shown in (a) and (c), respectively correspond
ig. 7 (b) and (c).

where n and i are integers. A polygon boundary �0 (such as a square
box) advected in the flow thus remains a polygon with increasing

numbers of sides. The boundary can be followed by simply adding
vertices wherever the boundary crosses the shear planes defined
by Eqs. (12) and (13) on each half cycle. For the range of flows stud-
ied the lengths of the sides of the polygon is of same order as the
distance between the shear planes (0.5), so the number of points

line across the lamellae at each location backwards in time, as described in the text,
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Table 1
The number of points required to describe the passive boundary for a segregated
region of fluid as it is advected in the sine and saw-tooth flows.

t/T Sine flow Saw-tooth flow

1 1,214 6
2 9,293 28
3 60,620 152
4 377,237 914
5 2,239,229 5,284
6 11,716,088 30,234

r
t
t
t
t
o
e
fl
b
9
t
i
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t
p

p
o
s
n
o
t
b
(
w
t
i
i

e
s
a

as rectangular blocks with a thickness calculated from the numer-

F
b

7 173,660
8 996,894
9 5,718,624

equired to follow the boundary is several orders of magnitude less
hat that for the sine flow or other two-dimensional chaotic flows
hat have been used in previous studies of this type. This is illus-
rated in Table 1, which compares the number of points required
o describe the boundary for the sine flow and the saw-tooth flow
ver a series of six flow periods. The reduced memory requirement
nables longer simulations to be performed with the saw-tooth
ow. For example the number of points required exceeds 107 after
etween 5 and 6 cycles of the since flow at T = 1.2, and after between
and 10 cycles of the saw-tooth flow at the same flow period. While

his does not seem particularly impressive, the length of interface
s growing at an exponential rate. Thus with the saw-tooth flow it is
ossible to simulate a boundary that is more than 250 times longer
han that achieved for the sine flow, using the same number of data
oints.

In addition to the reduced data required, the boundary is com-
letely defined by the location of the vertices, so that the thickness
f the lamellae at any point can be accurately determined. For flows
uch as the sine flow which generate curved boundaries, this is
ot the case since the location of the boundary between points
n the boundary must be approximated by interpolation. For very
hin lamellae this can lead to significant error unless the separation
etween boundary points is very small, as indicated by Eq. (1). Eq.
1) further emphasises this difference, since for the saw-tooth flow
here the interface is straight, there is no error in the determina-

ion of lamellae thicknesses associated with the description of the
nterface as a chain of points, since the radius of curvature of the
nterface, R, is infinite.
The saw-tooth flow is thus an excellent flow with which to
valuate the proposed method for determining the local lamellar
tructure. Fig. 6 shows the boundary location in the saw-tooth flow
fter one, two, three and five cycles for the saw-tooth flow with

ig. 11. Normalised difference between the lamellar thicknesses at X = (0.5, 0.5) determi
y stretching a finite line at X across the lamellae backwards in time, as described in the t
Journal 160 (2010) 267–276

T = 1.2, using periodic boundary conditions as before. As with the
sine flow, the boundary almost completely fills the unit box after
five cycles.

We now consider the local lamellar structure at a point in the
flow. For the purposes of this study, the location of the point is not
important. The central point X = (0.5, 0.5) has been chosen since a
fine lamellar structure is formed at this location. This point also has
the advantage that the radius of curvature for the sine flow is large,
so that the error in the determination of lamellae thicknesses using
the boundary method is low at this location. Fig. 7 shows the lamel-
lar structure observed at this location after three and five cycles for
the two flows, obtained from the boundary method, using the sim-
ulation of the boundary shown in Figs. 5 and 6. The length scale of
the lamellar structure decreases with increasing time as expected.
The orientation of the lamellae shown in Fig. 7 are perpendicular
to the directions of maximum stretching for the advection from
X to X0, which were found to be 0.0776 � and 0.1106 � radians
(relative to the x direction) for the sine flow and saw-tooth flow,
respectively.

Using the backtracking method described above this local lamel-
lar structure can be determined by advecting a finite line �� ,
centred at X = (0.5, 0.5) and perpendicular to the orientation of max-
imum stretching, backwards in time. Fig. 8 shows the line �0, after
advection backwards in time for three cycles of the sine flow and
saw-tooth flow. The line is shown as a dotted line in Fig. 8, except
where it intersects with the location of the segregated region of
fluid, where it is shown as a solid line. These solid lines correspond
to the lamellae which are formed at X = (0.5, 0.5) when the line is
advected forwards in time. Thus for the sine flow the line inter-
sects the segregated region nine times, indicating that there are
nine lamellae within a circle of diameter 0.12 at (X, 3T), consistent
with Fig. 7(a). Similarly for the saw-tooth flow eight lamellae are
expected to occur as observed in Fig. 7(c).

Fig. 9 shows the lamellae structure at X = (0.5,0.5) after an advec-
tion time of 3T determined using the backtracking method. The
thickness of each layer of fluid was determined by a numerical inte-
gration of Eq. (3). For the first layer the limits of the integration
are the start of the line and the first point of intersection between
the backtracked line (shown in Fig. 8) and the interface. For subse-
quent layers the limits are sequential intersection points between
the backtracked line and the interface. The layers were then plotted
ical integration, length equal to the length of the perpendicular
line before it is backtracked, and with the long side oriented in
the direction of maximum stretching at X. The layers were filled
where the backtracked line fell inside the interface. The thicknesses

ned from the advection of the passive boundary of a segregated region of fluid and
ext, for (a) the sine flow and (b) the saw-tooth flow with T = 1.2.
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f the fluid layers originating from both inside and outside the
egregated region must be calculated to determine the lamellar
tructure. There is close agreement between the lamellar structures
bserved in Figs. 7 and 9, for both the sine and saw-tooth flows.

Fig. 7(c) and 9(c) illustrate the weakness of the one-dimensional
ssumption, as the folding point [the end of the lamellar layer
hich does not span the circle in Fig. 7(c)], cannot be observed with

he one-dimensional assumption used in the backtracking method.
owever, comparison of Figs. 7 and 9 gives a qualitative indica-

ion that the backtracking method can be used to determine the
ocal lamellar structure without the need to follow the boundary of
he segregated region. The qualitative comparison can be extended
y constructing the lamellar structure across the entire unit cell.
ig. 10 shows the lamellar structure determined by the backtrack-
ng method at an array of 1600 locations distributed within the unit
ell. Comparison with the simulations of the passive boundary in
igs. 5 and 6 confirms that the backtracking method is an effective
ethod for determining the lamellar structure.
To obtain a more quantitative indication of the accuracy of the

ethod, the difference between the lamellae thicknesses deter-
ined from the two methods was determined. Fig. 11 shows the

ariation of the normalised error ε:

=
∣∣w′ − w

∣∣
w

(14)

here w and w′ are the lamellar widths determined from the
oundary and backtracking methods, respectively. For the sine flow
Fig. 11(a)] the difference is at most a few percent, even for the
ery thin lamellae obtained after six cycles. The error is caused
y a combination of factors including the numerical integration in
he backtracking method (Eq. (3)) and the error in the boundary

ethod associated with the approximation of the passive boundary
s a chain of points [26]. Note that the maximum distance between
djacent points on the boundary was 0.005 for advection times of
T and 4T, and 0.002 and 0.001 for 5T and 6T, respectively.

With the saw-tooth flow the main sources of error are elimi-
ated, as the location of the boundary is precisely defined by the
ertices and the stretching is constant on each line segment, so
here is no error in the numerical integration of Eq. (3). There is
small difference in the orientation used to measure the lamel-

ar thicknesses, as for the boundary method this is based on the
rientation of the boundary in the vicinity of X, while for the back-
racking method it is based on the orientation with maximum
tretching at X. However, the observed error is close to what would
e expected from truncation errors, with the exception of the data
or an advection time of 3T. For this case the higher error is probably
ue to differences in the orientations used, as the one-dimensional
pproximation is less accurate at short advection times.

. Conclusions

In this study we have shown that the local lamellar structure
an be accurately determined without the need to simulate the
oundary of the entire passive boundary of a segregated region of
uid. The method is efficient for determining the lamellar structure
t a particular location or at an array of locations in a rapidly mix-
ng flow. Although it has been shown that the structure throughout
he mixture can be determined using the backtracking method, this
ses a similar amount of computational effort as a full simulation of
he interface, since the total length of the stretched array of back-
racked lines will be similar or even longer than that of the full

nterface. However, the method is memory efficient as it is not nec-
ssary to store the information to describe the backtracked lines,
erely the orientation and lamellae thicknesses at each location.

n addition, by obtaining the micromixing structure at an array of
ocations, the method could be used to obtain statistical informa-
Journal 160 (2010) 267–276 275

tion on the lamellar structure for situations where full simulation
is impractical. In this way it could be used to map the distribution
of the micromixing structure in a mixing process and to construct
new micromixing, diffusion and reaction models.

The method is suitable for flows for which the one-dimensional
lamellar model can be used. However, the method does not require
excessive memory and the numerical error can be controlled to
ensure an accurate structure is obtained. The conventional sim-
ulation of the full boundary fails at long advection times as the
memory requirement increases exponentially. Using the back-
tracking method, only the fluid around the location of interest is
advected (backwards in time), so only relevant fluid is simulated.
The method is not limited to short advection times and in principle
could be used for arbitrary time. However, for rapid mixing systems
for long advection times the length scale of the lamellar structure
will become very fine and may require extended precision to elim-
inate truncation errors. In practice the length scale and hence the
advection time will be limited by diffusion processes.

The one-dimensional assumption leads to errors associated with
curvature of the boundary and lamellae. The curvature itself could
be accommodated by determining the local radius of curvature
which can be readily obtained [31,32]. However, the ends and
folds of lamellae cannot be readily observed using the backtrack-
ing method. The folding of fluid in chaotic flows is an area that
merits further study in relation to micromixing processes. A sim-
ple two-dimensional approach which could be used to describe the
local lamellar structure would be to simulate the advection of an
array of points around a location backwards in time and determine
which of them originated in the segregated region. The accuracy of
this method would be limited by the initial separation of adjacent
points prior to their advection backwards in time.

The backtracking method could be readily combined with
simulations of diffusion and reaction to improve the accuracy
of micromixing simulations. The method has been tested for
deterministic two-dimensional flows, but can be applied to any
two-dimensional flow where a full description of the Eulerian
flow field has been obtained. In principle, the method could be
readily extended to three-dimensional flows provided the one-
dimensional approximation can be applied. Practical applications
include laminar flow processes including the oscillatory flow reac-
tor [33], microfluidic devices [34] and static mixers [35]. Direct
numerical simulations of turbulent flows also open the possibility
of studying more complex systems such as combustion processes.

Another interesting possibility is to use the backtracking
method for simulation of mixing of fluids with different properties
(e.g. different viscosities). For short advection times full simulations
could be used until this becomes unfeasible due to memory con-
straints or numerical errors. The backtracking method could then
be used to determine the local fluid structure at longer times, from
which the local fluid rheology could be determined.
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